AI FOMO에 휩쓸려 뭐라도 해야겠다는 생각이 드는 입문자(?)라면, 대뜸 강의든 장비든 뭐든 비싼 무엇을 사지 말고 다음 두 가지를 하시길 권해봅니다.

  1. 가장 비싼 Plan으로 마음껏 써보기 클로드 코드, 코덱스 등 AI 에이전트 서비스의 가장 비싼 Plan을 한 달 정도는 경험해보세요. 사용량 제한받거나 성능이 떨어지는 AI 모델을 쓰면, AI에 대한 관점도 그 정도에 갇힐 가능성이 커요.

프론티어급 모델을 토큰 화끈하게 사용했을 때 AI 서비스가 제공하는 가치는 꼭 경험해봐야 합니다.

AI 모델 이용료는 더 줄어들 수 있지만, AI 모델을 더 내 손 위에 쥐어주는 AI 에이전트 서비스는 부가가치를 높이는 방향으로 이용료가 낮아지진 않을 겁니다. 게다가 현재는 경쟁하느라 적자 감수하며 퍼주는 것에 가까워서 고객에게 잔치 시기가 끝나면 이용료가 오르거나 제약이 커질 것 같습니다.

제 직업 환경의 상황으로 예로 들지요. 새로운 소프트웨어 개발 도구를 도입할 때, 잘못 도입하면 발생하는 비용이 크기 때문에 많은 시간 분석하고 검증하고, 학습하였습니다. 가치있는 일이지만 시간 비용이 너무 큽니다. 그러나 최근에 AI 코딩 에이전트를 이용해 후보 도구를 동시에 적용해봅니다. 예전엔 여러 사람이 동원되거나 긴 시간을 들여야 했지만, 이제는 혼자서 짧게는 몇 시간, 길어도 며칠 안에 실 경험에 기반한 판단 자료를 도출합니다.

리서칭하는 도구에 대해 직접 조사하거나 AI가 조사한 걸 리뷰하고 재검증하기도 했습니다. 하지만 사용량이 넉넉한 Plan을 사용한 이후로는 사용할 도구가 오픈소스인 경우, 코드 전체를 AI 에게 분석시키곤 합니다. 토큰 사용량으로 보면 1시간도 안 되어 몇 만원을 쓰는 셈인데, 제가 알고싶은 정보를 자세히 학습하기에도 좋고, AI 환각을 줄여주는 데에도 도움이 됩니다.

사용량 제한이 큰 Plan을 사용할 땐 마치 토큰을 아껴쓰느라 예전처럼, 즉 현재처럼 AI를 활용할 엄두를 못냈습니다.

  1. 가능성과 한계 인식하기 1번의 연장인데, 화끈하게 AI 에이전트를 여러 방향으로 사용하다보면 자연스레 생각이 복잡해질텐데, 특히 다음 두 가지를 고민해보세요.
  • 내가 하는 일, 내 환경에 대해 재정의하기
  • 재정의한 내 상황에 비추어 가능성(미래)과 한계(현재)를 정의하기

그동안 많은 일하는 방식, 학습하는 방식, 협업하는 방식은 “사람”을 대상으로, 기준으로 하여 오랜 세월 고도화되어 잡힌 체계입니다. AI는 사람과 다릅니다.

소프트웨어를 만드는 환경을 예로 들겠습니다. 조직의 협업 체계에서 대개는 개발팀, 즉 소프트웨어 개발이 병목 자원입니다. 그래서 병목 자원 관리에 초점을 많추는 소프트웨어 개발 방법이나 협업 체계가 대부분입니다. 과감히 납작하게 본다면, 기획을 조직에 전파하는 용도로 발표 장표를 만드는 이유는, 그 작업 비용이 더 싸기 때문입니다. 전달력이 떨어지지만 전체적으로 봤을 때 저렴한 경우가 많습니다. 만약 발표 장표 만드는 목적이 비용이라면, AI 코딩 에이전트를 사용하여 데모 버전을 만드는 게 더 저렴합니다. 이용료, 시간은 물론이고, 실제 돌아가는 데모 버전의 전달력도 정적인 글, 그림보다 낫습니다.

AI 에이전트를 펑펑 사용하면서 자신이 일하는 체계, 방식에서 사람 간 협업을 기준으로 하는 부분이 무엇인지 고민해보세요.

대체하거나 효율을 높일 부분 뿐만 아니라 한계도 고민하세요. 그 한계가 AI 모델이나 에이전트에서 기인하는 걸 수도 있고, 사람(자기 자신)에게서 기인하는 걸 수도 있습니다.


2번 단계에 오면 다음에 뭘 해야할지 방향이 잡힙니다. 하다못해 강의나 강좌, 책도 무엇을 봐야할지 관점이 생깁니다. 어떤 사람과 어떻게 협업할지, 어떤 도구에 돈을 더 들일지, 내가 몸으로 떼우는 게 나을지. 그 단계에 돈을 쓰세요.

이 과정을 경험하고, 내 관점을 갖는 데 1~2달이면 충분합니다. 요즘처럼 AI 발전이 빠른 시기에 너무 느린 것 아니냐고요. 불과 1년 전만 해도 AI 코딩 에이전트의 수준은 현재와 비교불가 수준이었다는 걸 보면 그런 마음이 들 수 있습니다. 근데, AI가 도구라는 점은 전혀 달라지지 않았습니다. 문제를 정의하고, 실제 문제를 해결하는(execution) 결정과 방식은 사람이 합니다. 끊임없이 새로운 도구는 나왔고 발전해왔지만, hello world에 머무르는 사람은 그때나 지금이나 hello world에 머무르고, 변화를 일으키거나 변화하는 사람도 그때나 지금이나 있어왔습니다.


보안 위협 등 조심해야 할 건 많은데, 이또한 앞서 거론한 “한계”로 파악하는 게 우선입니다. 문제를 알고, 정의할 수 있으면 해결 방법도 찾을 가능성이 큽니다. 더군다나 AI가 끝내주는 점 중 하나는 자연어로 소프트웨어 “엔지니어링”을 실행하는 겁니다. 그리고 “소프트웨어”여서 실행 비용이 상대적으로 저렴하고요.

고환율 시기라 100 USD, 200 USD가 부담스럽지만, 고성능 AI 도구를 다양한 방법으로 써보며 내 생각과 관점을 넓히는 비용으로는 저렴합니다.

2

If you have a fediverse account, you can reply to this note from your own instance. Search https://hackers.pub/ap/notes/019c3cde-e2e7-7462-9700-0dad090ce7e7 on your instance and reply to it.